		Mark	Comment	
1(i)	15-V m s 1 0 10 30 35	B1	Acc and dec shown as straight lines	
		B1 B1	Horizontal straight section All correct with v and times marked and at least one axis labelled. Accept (t, v) or (v, t) used.	
				3
(ii)	Distance is found from the area	M1	At least one area attempted or equivalent <i>uvast</i> attempted over one appropriate interval.	
	area is $\frac{1}{2} \times 10 \times 15 + 20 \times 15 + \frac{1}{2} \times 5 \times 15$	A1	Award for at least two areas (or equivalent) correct	
	(or $\frac{1}{2} \times (20 + 35) \times 15$)		Allow if a trapezium used and only 1 substitution error. FT their diagram.	
	= 412.5 so distance is 412.5 m	A1	cao (Accept 410 or better accuracy)	3

		mark		sub
2	either $70V$ obtained So $70V = 1400$ and $V = 20$	M1 A1 M1 A1	Attempt at area. If not trapezium method at least one part area correct. Accept equivalent. Or equivalent – need not be evaluated. Equate their 70 V to 1400. Must have attempt at complete areas or equations. cao Attempt to find areas in terms of ratios (at least	
	v = 20	M1 A1 M1 A1	one correct) Correct total ratio – need not be evaluated. (Evidence may be 800 or 400 or 200 seen). Complete method. (Evidence may be 800/40 or 400/20 or 200/10 seen). cao [Award 3/4 for 20 seen WWW]	
				4

		mark		Sub
3(i)	$\frac{-15}{6}$ = -2.5 so -2.5 m s ⁻²	M1 A1	Use of $\Delta v/\Delta t$. Condone use of v/t . Must have - ve sign. Accept no units.	2
(ii)	$\frac{1}{2} \times 10 \times 4 = 20 \text{ m}$	M1 A1	Attempt at area or equivalent	2
(iii)	Area under graph is $\frac{1}{2} \times 5 \times 5 = 12.5$ (and -ve) closest is $20-12.5 = 7.5$ m	M1	May be implied. Area from 4 to 9 attempted. Condone missing –ve sign. Do not award if area beyond 9 is used (as well).	2

		mark		
4(i)	Area under curve $0.5 \times 2 \times 20 + 0.5 \times (20 + 10) \times 4 + 0.5 \times 10 \times 1$ $= 85 \text{ m}$	M1 B1 A1	Attempt to find any area under curve or use const accn results Any area correct (Accept 20 or 60 or 5 without explanation) cao	3
(ii)	$\frac{20-10}{4} = 2.5$ upwards	M1 A1 B1	$\Delta v/\Delta t$ accept ± 2.5 Accept -2.5 downwards (allow direction specified by diagram etc). Accept 'opposite direction to motion'.	3
(iii)	v = -2.5t + c $v = 20 when t = 2$ $v = -2.5t + 25$	M1 M1 A1	Allow their a in the form $v = \pm at + c$ or $v = \pm a(t-2) + c$ cao [Allow $v = 20 - 2.5(t-2)$] [Allow 2/3 for different variable to t used, e.g. x . Allow any variable name for speed]	3
(iv)	Falling with negligible resistance	E1	Accept 'zero resistance', or 'no resistance' seen.	1
(v)	$-1.5 \times 4 + 9.5 \times 2 + 7 = 20$ $-1.5 \times 36 + 9.5 \times 6 + 7 = 10$ $-1.5 \times 49 + 9.5 \times 7 + 7 = 0$	E1 E1	One of the results shown All three shown. Be generous about the 'show'.	2
(vi)	$\int_{2}^{7} (-1.5t^{2} + 9.5t + 7)dt$ $= \left[-0.5t^{3} + 4.75t^{2} + 7t \right]_{2}^{7}$ $= \left(-\frac{343}{2} + \frac{19 \times 49}{4} + 49 \right) - \left(-4 + 19 + 14 \right)$	M1 A1 A1 A1 A1 A1	Limits not required A1 for each term. Limits not required. Condone $+c$ Attempt to use both limits on an integrated expression Correct substitution in their expression including subtraction (may be left as an expression).	
	= 81.25 m	A1 19	cao.	7

Foll	Follow through between parts of Question 5 should be allowed for the value of h (when $t = 10$) found in part (iii) if it is used in part (iv) or in part (v)(A).						
5	(i)	Integrate a to obtain v	M1	Attempt to integrate			
		$v = 10t - \frac{1}{2}t^2 (+c)$	A1				
		$t = 10 \Longrightarrow v = 100 - 50 = 50$	M1	Substitution of $t = 10$ to find v			
		Since $a = 0$ for $t > 10$, $v = 50$ for $t > 10$	A1	Sound argument required for given answer. It must in some way refer to $a = 0$.			
			[4]				
	(ii)	Continuous two part v-t graph	B1	The graph must cover $t = 0$ to $t = 20$			
		80 Tyelocity 70 60 50 40 30 20 10 time					
		Curve for $0 \le t \le 10$	B1				
		Horizontal straight line for $10 \le t \le 20$	B1	B0 if no vertical scale is given			
			[3]				

5	(iii)		Distance fallen = $\int \left(10t - \frac{1}{2}t^2\right) dt$	M1	Attempt to integrate
			$d = 5t^2 - \frac{1}{6}t^3 + c \qquad (c = 0)$	A1	
			Height = 1000 - d		
			Height = $1000 - 5t^2 + \frac{1}{6}t^3$	A1	This mark should only be given if the signs are correctly obtained.
			When $t = 10$, $h = 667$	B1	oe
				[4]	
	(iv)		Time at constant vel = $667 \div 50 = 13.3$	B1	FT for h from part (iii)
			Total time $t = 10 + 13.3 = 23.3$	B1	FT
				[2]	
	(v)	A	Since 500 > 333	M1	For finding the height at which the crate reaches terminal velocity, eg $h = 167$, or equivalent relevant calculation. FT for h from part (iii) if used.
			The box will have reached terminal speed.	A1	Allow either one (or both) of these two statements.
			So there is no improvement		
				[2]	
	(v)	B	$v = 10t - t^2 \text{(for } t \le 5\text{)}$	M1	Integration to find <i>v</i>
			Terminal velocity is 25 m s ⁻¹	A1	
			So better	A1	
				[3]	

		mark	comment	sub
6(i)	The distance travelled by P is $0.5 \times 0.5 \times t^2$ The distance travelled by Q is $10t$	B1 B1	Accept 10 <i>t</i> + 125 if used correctly below.	2
(ii)	Meet when $0.25t^2 = 125 + 10t$ so $t^2 - 40t - 500 = 0$ Solving t = 50 (or -10) Distance is $0.25 \times 50^2 = 625 \text{ m}$	M1 F1 A1 A1	All their wrong expressions for P and Q distances Allow ± 125 or 125 omitted Award for their expressions as long as one is quadratic and one linear. Must have 125 with correct sign. Accept any method that yields (smaller) + ve root of their 3 term quadratic cao Allow –ve root not mentioned cao [SC2 400 m seen]	5
		7		